The Tribal Climate Change Guide is part of the Pacific Northwest Tribal Climate Change Project (TCCP). The TCCP is part of the L.I.G.H.T. Foundation (LF), is an independent, Indigenous-led, conservation 501(c)(3) nonprofit established on the Colville Indian Reservation in the traditional territory of the Nespelem Tribe in present-day north central Washington State. LF supports the restoration and cultivation of native Plant and Pollinator Relatives and the culturally respectful conservation of habitats and ecosystems which are climate resilient and adaptive. For more information about LF, visit: https://thepnwlf.org/. For more information about the Tribal Climate Change Project, visit: https://tribalclimate.uoregon.edu/. If you would like to add information to this guide, please email kathy.lynn.or@gmail.com.

 

Webinar: Climate change induced resource synchronization disrupts Kodiak brown bear and salmon food webs

Type
Events
Event Date
Organization
NOAA
Description

Climate change is altering the seasonal timing of life-cycle events in organisms across the planet, but the magnitude of change often varies among taxa. This can cause the temporal relationships among species to change, altering the strength of interaction. A large body of work has explored what happens when co-evolved species shift out of sync, but virtually no studies have documented the effects of climate-induced synchronization, which could remove temporal barriers between species and create novel interactions. We explored how a predator, the Kodiak brown bear (Ursus arctos middendorffi), responded to asymmetric phenological shifts between its primary trophic resources, sockeye salmon (Oncorhynchus nerka) and red elderberry (Sambucus racemosa). In years with anomalously high spring air temperatures, elderberry fruited several weeks earlier and became available during the period when salmon spawned in tributary streams. Bears departed salmon spawning streams, where they typically kill 25-75% of the salmon, to forage on berries on adjacent hillsides. This prey switching behavior attenuated an iconic predator-prey interaction and likely altered the many ecological functions that result from bears foraging on salmon. We documented how climate-induced shifts in resource phenology can alter food webs through a mechanism other than trophic mismatch. The current emphasis on singular consumer-resource interactions fails to capture how climate-altered phenologies reschedule resource availability and alter how energy flows through ecosystems.

Geography